EVIDENCE ON DEVELOPMENTAL AND REPRODUCTIVE TOXICITY OF SODIUM NITRITE

Reproductive and Cancer Hazard Assessment Section (RCHAS)
Office of Environmental Health Hazard Assessment (OEHHA)
California Environmental Protection Agency (Cal/EPA)

Outline of Presentation

- Background: chemical properties, metabolism, and exposure
- General toxicity
- Reproductive toxicity
- Developmental toxicity, non-cancer endpoints
- Transplacental carcinogenesis
- Summary comments

Sodium nitrite, or nitrous acid sodium salt

- CAS No. 7632-00-0
- molecular formula: NaNO₂
- molecular weight: 69.00
- water soluble, inorganic salt

NO₃nitrate

NO₂nitrite

- About 5% of an ingested dose of nitrate is reduced to nitrite by microorganisms resident in the oral cavity
- Can also be reduced in the stomach, if pH is sufficiently high

OEHHA

Formation of N-nitroso Compounds

OEHHA

Exposure

Direct exposure to sodium nitrite or nitrite ion, or metabolic conversion from nitrate

- Sodium nitrite added to cured meats as a preservative, color fixative, and flavor enhancer
- Nitrite and nitrate naturally present in vegetables
- Nitrite and nitrate can be present in drinking water

Methemoglobin (MetHb)

- Nitrite in the blood participates in an oxidation reaction with hemoglobin (Hb) to form MetHb
- MetHb cannot carry oxygen
- Ascorbic acid (and other antioxidants) may slow the rate of MetHb formation
- Reduction of MetHb to Hb is catalyzed by NADPH-MetHb-reductase
- Methylene blue is used therapeutically to accelerate MetHb-reductase activity

Effects on Fertility

- No human data
- Six pair-based animal studies of sodium nitrite, and one of potassium nitrite
 - o NTP continuous breeding study in mice
 - One-generation feeding study in rats
 - o One-generation study of rats fed sodium nitrite-treated meat
 - o Three-generation drinking water study in rats
 - o One-generation drinking water study in mice
 - o Subchronic study of rats fed sodium nitrite-treated fish
 - Drinking water study of potassium nitrite in guinea pigs
- No effects observed on parameters of fertility

Effects on Other Reproductive Parameters

Female Reproductive Toxicity

- o Five studies reported on non-fertility reproductive endpoints in females
- One report of reduced offspring growth suggested a possible lactationsuppressing effect in mice
- Inflamed reproductive organs and placental degeneration in guinea pigs given potassium nitrite during pregnancy

• Male Reproductive Toxicity

- o Five studies reported on non-fertility reproductive endpoints in males
- Two studies reported on testicular changes in rats, which could not be conclusively attributed to sodium nitrite exposure

New Data Relevant to Reproductive Toxicity (NTP Draft Technical Report; Peer Review Date, 18 May 2000)

• 14- week drinking water studies in male and female rats and mice

- O Significantly reduced sperm motility in both species at higher concentrations; apparent concentration response
- O Testicular degeneration in mice at the two highest concentrations
- o Estrous cycle length significantly increased at higher concentrations in mice
- O Survival not affected; reduced body weights and increased relative weights for some organs at the highest concentrations
- Rats showed more clinical symptoms of methemoglobinemia than did mice; no NOAEL for increased methemoglobin in rats

• 2-year drinking water studies in male and female rats and mice

- No notable histopathological changes in the reproductive organs of male or female rats or mice
- o Survival not affected; reduced body weights at highest concentration

Effects on Development – Human Data

- No data available on sodium nitrite
- Case-control studies of two populations exposed to nitrate in drinking water during pregnancy
 - Australia: significant increased risk for CNS malformations, also for all malformations with an apparent dose effect
 - Canada: non-significant increased risk for CNS malformations
- Study of pregnant women given nitrosatable drugs
 - Can undergo nitrosation to form N-nitroso compounds
 - Significantly increased risk for major malformations with exposure during first four months of pregnancy

Effects on Development in Guinea Pigs

• Sodium nitrite (s.c.)

- o Two studies; several small experiments
- o Ascorbic acid deficient vs non-deficient animals
- o Increased abortion in treated/deficient animals at lower doses than in treated/non-deficient animals
- o Prevented by methylene blue
- o Fetal deaths associated with increased maternal MetHb

• Potassium nitrite (drinking water)

- o One study; small groups of guinea pigs
- Males and females exposed
- o One maternal death, reduced weight gain at high dose
- All fetuses died at two highest doses
- o Increased fetal loss in all treated litters, no statistics

Effects on Development in Mice

- Study of erythropoiesis on gestation days 14, 16, and 18
 - o Treatment of dams by gavage, throughout gestation
 - Maternal effects not reported
 - No effects on viability or gross morphology
 - Significant changes in parameters of hepatic erythropoiesis
- Developmental toxicity study
 - o Treatment of dams by gavage, gestation days 6-15
 - Minimal maternal toxicity at highest doses
 - Apparent decrease in viability probably not related to treatment
- Drinking water study
 - Treatment of dams via drinking water, gestation days 7-18
 - No significant effects on dams or fetuses

Effects on Development in Rats

• Three studies of neurobehavioral parameters

- o Treated drinking water to dams from gestation day 13
- o Some animals given nimodipine (neuroprotective, antihypoxic)
- o Impairments of discrimination learning and long-term retention of passive avoidance
- Effects on open field activity
- O Hyperreactivity to footshock, and prolonged stress response
- o Effects on ingrowth of nerve fibers
- Effects prevented or alleviated by nimodipine

One drinking water study; exposure throughout gestation and lactation

- Maternal effects not reported
- Birthweights similar among groups
- O Mean litter size lower in treated animals; no statistics

Placental Transport

- Nitrite found in fetal blood following maternal dosing (oral or injection) of rats and guinea pigs
- Nitrite shown to cross the placenta in dairy cows
- Nitrite dosing of pregnant animals resulted in elevated methemoglobin in fetuses as well as mothers

Toxicosis

Methemoglobinemia in pregnant and lactating animals

- o Pregnant rats more sensitive to acute lethality
- o Chronically exposed pregnant rats became severely anemic, while non-pregnant rats maintained control Hb levels
- o *In vitro*, erythrocytes from pregnant mice had higher velocity of MetHb formation

Maternal and fetal toxicosis in infused dairy cows

- o Maternal effects: increased MetHb, reduced blood pressure, increased heart rate, and decreased arterial PO₂
- o Nitrite appeared in fetal circulation, and fetal MetHb levels rose
- o Fetal heart rates were affected, and fetal PO₂ depressed
- No increase in frequency of premature delivery or abortion.

Transplacental carcinogenesis

• Animal studies and other relevant data

• Epidemiologic studies

Formation of N-nitroso Compounds

OEHHA

Sources of

- endogenous production
 - e.g., histamine, spermine, tyramine
- foods
 - e.g., meats, fruits, vegetables, grains
- beverages
 - e.g., wine, beer, coffee, tea
- medicines
 - e.g., antihistamines, antibiotics, tranquilizers

Inhibitors of nitroso f

- Vitamin C (ascorbic acid)
- Polyphenols
- Other antioxidants (e.g., vitamin E)

Endogenous production of vitamin C

Human

Guinea pig No

Hamster Yes

Rat

Mouse

Other Relevant Data: Cancer studies of N-nitroso compounds

Nitrosamines

 tumors of the liver, esophagus, nasal and oral mucosa, kidney, pancreas, bladder, lung, thyroid

Nitrosoureas

– tumors of lymphatic and nervous system

Other Relevant Data: Transplacental cancer studies of N-nitroso compounds

Nitrosoureas

- brain, spinal cord, PNS tumors in the rat
- hematopoetic tumors in the mouse
- kidney, liver, lung tumors in the hamster

Animal studies of transplacental carcinogenesis

Species	NaNO ₂	NaNO ₂ +
	alone	amine/amide
Hamster	2	3: ethylurea (2),
		morpholine
Rat	3	3: L-citrulline,
		morpholine,
		diethylamine
Mouse	2	1: cimetidine

Prenatal exposure

Hamster (gd 15)	NaNO ₂ alone		Rustia, 1975
	+ethylurea	PNS tumors (*inhibited by ascorbate)	
Hamster (gd 12-15)	NaNO ₂ + ethylurea	PNS tumors	Rustia & Schenken, 1976
Rat (gd 13-	NaNO ₂ alone		Ivankovic, 1979
23)	+ citrulline	Wilms' tumor (kidney)	

Pre- & postnatal exposure

Hamster	NaNO ₂ alone + morpholine	 	Shank & Newberne, 1976
Rat	NaNO ₂ alone + morpholine	Lymphoreticular, total tumors (other than liver & angiosarcomas) Liver carcinoma, Angiosarcoma of Liver, Lung	Shank & Newberne, 1976
Rat	NaNO ₂ alone +diethylamine		Druckery et al., 1963
Mouse	NaNO ₂ alone + cimetidine	Lung, Lymphoma Lung	Anderson et al., 1985
Mouse	NaNO ₂ alone		Hawkes <i>et al.</i> , 1992

Epidemiologic studies

- Childhood leukemia
- Childhood brain tumors

Epidemiologic approach

- Dietary intake during pregnancy as recalled by mothers
- Exposure: frequency of consumption of cured meats
- Controls matched on date of birth, race;
 identified by random digit dialing
- Adjustment in analyses for other factors (e.g., SES, other exposures, maternal age)

Childhood Leukemia and Maternal Diet During Pregnancy

Study characteristics

- Three case-control studies
- Two smaller studies, one large (232 cases)
- Various ages (<1 year, 0-14, 1-10)
- Leukemia types mixed or separated
- Largest study had detailed exposure information

Childhood Leukemia and Maternal Diet During Pregnancy

Maternal consumption of cured meats

- No statistically significant increased risks
- Possible dose-response effect observed for hot dogs in large study (p≤0.1)
- Apparent difference in risk by leukemia type in study of infants

Childhood Leukemia: Other Relevant Data

Childhood consumption of cured meats

- Largest study:
 Dose-related trend for hot dogs (p≤0.001)
 Significant OR=5.8 in high dose group
- Infant study: No data
- Study of one leukemia type (ALL):
 Significant risk associated with hot dog
 consumption in those who took no vitamins

Childhood Brain Tumors and Maternal Diet During Pregnancy

Study characteristics

- Nine case-control studies of brain tumors
- Published in 1982 1996
- U.S. and Canada, France and Australia
- Cases identified through cancer registries
- Age at diagnosis: 0 14 or 15 years
 (6 studies); 0-6 (2 studies), 0-19 (1 study)
- Largest study had 540 cases (801 controls)

Childhood Brain Tumors and Maternal Diet During Pregnancy

All cured meats

- Statistically significant increased risks in four studies & one published abstract
- ORs ranging from 1.4 to 2.5
- Dose-response effect observed in largest study

Childhood Brain Tumors and Maternal Diet During Pregnancy

Hot dog consumption

- Statistically significant increased risks in four of six studies
- ORs ranging from 1.4 to 2.3
- Possible dose-response effect observed in one large study reported only in abstract form

Childhood Brain Tumors: Maternal Vitamin Use

- Prenatal vitamin use decreased risk when used throughout pregnancy OR=0.54, p<0.05
- Prenatal vitamin use reduced risk associated with cured meat consumption

Median intake of cured meat

OR=2.4, p<0.05 without vitamins

OR=1.3 p=0.05 with vitamins

Childhood Brain Tumors: Other Relevant Data

- Childhood consumption of cured meats: four studies with mixed results
- Seven of 10 published case-control studies of adult brain tumor risk found an association with cured meat intake

Additional Considerations

- Potential for biased recall of diet
- Association with food group could be proxy for another exposure (e.g., fat)
- Sodium nitrite exposure levels not quantified
- Effect examined in a variety of populations
- Relatively consistent effect across a range of studies of childhood brain tumors

Available Evidence

Reproductive toxicity

- No human data
- Fertility in animals
- Other reproductive endpoints in animals

• Developmental toxicity (non-cancer endpoints)

- Human data on nitrates and nitrosatable drugs
- Animal data from three species
- O Studies on placental transport, methemoglobinemia during pregnancy, and nitrite toxicosis in pregnant animals

• Transplacental carcinogenicity

- o Animal models
- Human data on nitrite-containing foods

